Crim1 has cell-autonomous and paracrine roles during embryonic heart development
نویسندگان
چکیده
The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development.
منابع مشابه
Roles of FGF Signals in Heart Development, Health, and Disease
The heart provides the body with oxygen and nutrients and assists in the removal of metabolic waste through the blood vessels of the circulatory system. It is the first organ to form during embryonic morphogenesis. FGFs with diverse functions in development, health, and disease are signaling proteins, mostly as paracrine growth factors or endocrine hormones. The human/mouse FGF family comprises...
متن کاملReview Crim1–, a regulator of developmental organogenesis
availability and activity is critical during embryogenesis to ensure appropriate organogenesis. This process is regulated through the coordinated expression of growth factors and their cognate receptors, as well as via proteins that can bind, sequester or localize growth factors to distinct locations. One such protein is the transmembrane protein Crim1. This protein has been shown to be express...
متن کاملThe role of interleukin on uterine endometrium, placenta and embryonic
Introduction: The polypeptide cytokine interleukin-1 is found in all body tissues and plays its role in inflammatory changes. Interleukin-1 is known as alarm cytokine in defense mechanism, particularly immunological responses. The interleukin receptor is present in different tissues and in endometrial epithelium and its antagonist will be increased during preimplantation period, therefore it ...
متن کاملVascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...
متن کاملسلولهای بنیادی قلبی در یک نگاه: مقاله مروری
It was assumed that the loss of cardiomyocytes is irreversible. The main goal is to develop widely available and clinically applicable treatments for heart diseases. The several studies have showed that the use of stem cells can improve complicacies such as cardiovascular diseases. Stem cells have a potential benefit of the self-renewal and cell differentiation into the cell types that can play...
متن کامل